GenAI trifft Unternehmenswissen: Retrieval Augmented Generation für korrekte Antworten

In der Welt der generativen KI markiert RAG den nächsten Evolutionsschritt. Textgeneratoren werden dabei um den Zugriff auf externe Informationsquellen angereichert.

ChatGPT, Bard und Co. fällt zwar zu nahezu jeder Frage etwas ein, aber ob die Antworten immer korrekt sind, dessen kann man sich nicht sicher sein. Nicht ohne Grund kam schnell das Schlagwort vom „Bullshit-Generator“ auf. Zumindest zum jetzigen Status ist außerdem keine vollständige Aktualität gegeben (ChatGPT reicht nicht weiter als bis 2021). Dennoch ist die neue Technologie natürlich beeindruckend. Und sie gewinnt noch an Reiz, wenn sie mit firmeneigenem Wissen verknüpft wird. Hierbei spricht man von Retrieval Augmented Generation (RAG) – eine KI, die Informationen aus externen Wissensquellen abruft und dadurch die Qualität ihre eigenen Antworten schlagartig verbessert.

In diesem Beitrag gebe ich Ihnen einen Überblick über die Möglichkeiten mit sowie Funktionsweise von RAG und Einblicke in Projektbeispiele.

Retrieval Augmented Generation: Verknüpfung von KI mit firmeneigenem Wissen

Große Sprachmodelle (Large Language Models = LLM) wie ChatGPT und Bard verfügen nicht über eigenes Wissen, sondern sind stark darin, aus sehr großen Mengen an Input zielgerichteten Output zu generieren (siehe dazu auch hier). Das Wissen, das ein LLM aus seinen Trainingsdaten gelernt hat, wird als parametrisches Gedächtnis bezeichnet und in seinen neuronalen Gewichten gespeichert. LLMs verwenden dieses parametrische Gedächtnis, um auf Anfragen zu antworten. In den meisten Fällen ist jedoch die genaue Informationsquelle nicht bekannt. Deshalb können LLM auch keine wörtlichen Zitate liefern.

Sprachmodelle sind daher gut darin, allgemeine Texte auf Grundlage ihres Trainingsdatenkorpus zu generieren. In der unternehmerischen Praxis kommt es allerdings darauf an, Texte aus eigenen Wissensdatenbanken zu erstellen, wie sie im Intranet, auf Sharepoint- und Confluence-Seiten, wenn PDFs, Office-Dokumenten usw. vorliegen. Auf Grundlage dieser Informationen kann der KI-Assistent dann genaue und relevante Antworten liefern. Das derzeit größte Problem generativer Chatbots, ihre Tendenz zu Halluzinationen, lässt sich damit umgehen. In der genAI-Sprache bedeutet „Prompten“ die Eingabeaufforderung, die an das LLM gesendet wird. Sie wird beim RAG-Verfahren mit relevanten Informationen aus externen Wissensdatenbanken ergänzt, die über einen Information-Retrieval-Mechanismus abgerufen werden. Diese Informationen dienen als Kontext und werden gemeinsam mit der Anfrage verwendet, wodurch das parametrische Gedächtnis umgangen wird.

Vektorbasierte Datenbanken: So funktioniert RAG

Der Prompt wird in numerische Werte umgewandelt, was die Verwendung eines Embedding-Modells erfordert. Die numerischen Werte werden an eine Vektor- oder Graphdatenbank geleitet, in der das gesamte Wissen des Unternehmens gespeichert ist. Anhand der Werte werden die entsprechenden Einträge in der Datenbank gefunden, in Text rückverwandelt und dem LLM übergeben, zusammen mit Metadaten wie dem Speicherort und dem Ersteller eines PDFs. Dadurch bekommt man mit der Antwort zusätzlich die Quellenangabe geliefert.

Das beschriebene Vorgehen gilt als derzeit beste Methode zur Suche nach Inhalten. LLMs müssen hier in der Regel nicht weiter feingetunt oder trainiert werden (obwohl es in einigen Fällen sinnvoll sein kann). Voraussetzung dafür ist, dass das gesamte Unternehmenswissen dauerhaft vektorisiert wird. Dafür müssen bestehende Datensilos im Unternehmen aufgebrochen und zusammengeführt werden. Bisher arbeitet die klassische Unternehmenssuche hauptsächlich mit Indexdatenbanken, die nicht immer die gewünschte Antwortqualität liefern.

Die Zukunft der Unternehmenssuche: RAG in der Praxis

Retrieval Augmented Generation wird in allen Bereichen benötigt, in denen es auf aktuelle und genaue Informationen ankommt. Weil es aktuelle und kontextspezifische Daten verwendet, holt RAG generative KI-Systeme sozusagen in die Gegenwart. Bei  aller Art von Anfragen liefert die Technik sichtlich bessere Ergebnisse als ein großes generatives Sprachmodell allein.

RAG Beispiel 1

RAG in der Versicherungsbranche

RAG ist deshalb die Zukunft der Unternehmenssuche. Dies ist keine Utopie, sondern funktioniert bereits heute, wie X-INTEGRATE in einer Reihe von Projekten im Finanzdienstleistungssektor erfolgreich erprobt hat. Zum Beispiel hat eine Versicherung mithilfe von RAG einen Bot entwickelt, der automatisiert und individuell auf Sachstandsanfragen aus E-Mails oder Call-Center-Ereignissen antwortet, und zwar im spezifischen Kommunikationsstil der Versicherung.

RAG Beispiel 2

RAG im Bankensektor

Weiteres Beispiel ist eine Bank, die Finanzprodukte auf ihr Risiko hin bewerten muss. Der Risiko-Score basiert auf regulatorischen Anforderungen, internen Verfahrensanweisungen und Compliance-Richtlinien, die in Tausenden von Dokumenten enthalten sind. Kein Controller kann all diese Informationen überblicken. Die Bank hat sie vollständig vektorisiert und verwendet RAG, um Fragen zur Risikoeinschätzung an die Vektordatenbank zu stellen. Die Ergebnisse waren äußerst beeindruckend. Sie lüften einen Blick darauf, welches enorme Potenzial Retrieval Augmented Generation in der nahen Zukunft haben wird.

Interesse geweckt? X-INTEGRATE berät technologieneutral und führt bei Kunden ein individuelles „Unternehmens-GPT“ ein. Weitere Informationen dazu gibt es in unserem Workshop.

Über den Autor: Matthias Bauer

Matthias Bauer ist seit 2020 als Teamlead Data Science und seit 2023 als CTO bei der X-INTEGRATE (Teil der TIMETOACT GROUP) und bringt mehr als 15 Jahre Expertise als Solution Architect mit. Daten dafür nutzen, Großes zu schaffen und Mehrwerte zu erzielen – in seinen Worten: Data Thinking – ist seine Leidenschaft. Matthias ist erfahren in Artificial Intelligence, Data Science und Data Management; dabei bedient er von Data Warehousing bis hin zu Data Virtualization ein breites Spektrum an datenbezogenen Fragestellungen.  

Matthias Bauer
CTO & Teamlead Data Science X-INTEGRATE Software & Consulting GmbH

Sprechen Sie uns gerne an!

* Pflichtfelder

Wir verwenden die von Ihnen an uns gesendeten Angaben nur, um auf Ihren Wunsch hin mit Ihnen Kontakt im Zusammenhang mit Ihrer Anfrage aufzunehmen. Alle weiteren Informationen können Sie unseren Datenschutzhinweisen entnehmen.

Bitte Captcha lösen!

captcha image
Presse 15.03.24

Fachbeitrag: Dem Chatbot das Halluzinieren austreiben

Ein Fachbeitrag, im Digital Business Cloud Magazin zum Thema Retrieval Augmented Generation und der nächsten Entwicklungsstufe von künstlicher Intelligenz, von Matthias Bauer, Teamlead Data Science bei X-INTEGRATE.

Teaserbild Expertenbericht Privileged Remote Access
Blog 19.10.22

Sicherer Zugriff von Extern ohne VPN

Der privilegierte Zugriff von extern stellt viele Firmen vor Herausforderungen. Externe Mitarbeitende müssen verwaltet und der Zugriff bereitgestellt werden. Dabei kann die Übersicht schnell verloren gehen und die Nachvollziehbarkeit ist nicht mehr gewährleistet.

Event

Designing Trustworthy AI

Im Mittelpunkt steht die Frage, wie sich vertrauenswürdige KI-Systeme entwickeln und skalieren lassen – auf Basis einer sicheren Datenarchitektur und mit Blick auf die nächste Generation: Agentic AI.

Headerbild GenAI Consulting
Kompetenz 20.02.25

GenAI Consulting

Spätestens ChatGPT & Co. haben gezeigt: Generative AI hat das Potenzial, die Arbeitswelt zu revolutionieren. Wir unterstützen Sie dabei, dieses Potenzial für Ihr Unternehmen auszuschöpfen.

Blog 21.03.24

Effizienzmaximierung durch KI, Personalisierung & Daten

In dieser insights!-Folge haben wir Philipp Krüger, Vice President Marketing & Consulting von Pimcore zu Gast. Gemeinsam diskutieren wir über die Zukunft der digitalen Technologie und nehmen dabei die Auswirkungen generativer KI, Hyper-Personalisierung und fortschrittlicher Datenmanagementlösungen auf das Marketing und E-Commerce ins Visier.

Blog 26.05.23

Bare Metal trifft auf Public Cloud

Mit Bare Metal und Public Cloud bietet die OVHcloud zwei unterschiedliche Ansätze, um IT-Infrastruktur bereitzustellen. Beide stehen für unterschiedliche Vor und Nachteile. Mit Bare Metal mietet ein Kunde einen physische Server und erhält die vollständige Kontrolle über die Hardware, das Betriebssystem, die Netzwerk-Konfiguration und die darauf ausgeführten Anwendungen. Somit kann die IT-Infrastruktur komplett an individuelle Anforderungen angepasst werden. Diese Server sind somit speziell für einen Kunden reserviert und niemand anderes nutzt diese Ressourcen parallel.

Leistung

Neue Customer Journey trifft auf alten Vertrieb

Auch im Geschäftskundenbereich hat sich die Customer Journey massiv verändert.

Insights

Das sind die Gewinner der Enterprise RAG Challenge

Entdecken Sie die Gewinner der Enterprise RAG Challenge! Sehen Sie sich das offizielle Announcement an und erfahren Sie, wie KI-Retrieval und LLMs die besten RAG-Lösungen geformt haben.

Insights

Team-Leaderboard der Enterprise RAG Challenge

Das Team-Leaderboard fasst alle eingereichten Beiträge zusammen – auch jene, die nach Bekanntgabe der Ground Truth eingereicht wurden. Daher betrachten wir diese Rangliste als inoffizielle Übersicht.

Blog 21.01.25

Die Zukunft der KI: Enterprise RAG Challenge

KI-Innovation, die überzeugt: Die Enterprise RAG Challenge zeigt, was möglich ist.

Wissen 24.10.24

RAG-Systeme erklärt: Wettbewerbsvorteile mit IBM WatsonX

IBM WatsonX hilft mit RAG-Systemen, schnell und effizient datenbasierte Entscheidungen.

Insights

IBM watsonx Leaderboard der Enterprise RAG Challenge

Das Team-Leaderboard fasst alle eingereichten Beiträge zusammen – auch jene, die nach Bekanntgabe der Ground Truth eingereicht wurden. Daher betrachten wir diese Rangliste als inoffizielle Übersicht.

Wissen

Standortoptimierung als Teil des Supply Chain Managements

Das Supply Chain Management umfasst viele einzelne Aspekte der strategischen und operativen Arbeitsweise von Unternehmen. Einen möglichen Ansatz stellt die Standortoptimierung dar, die dieser Blogartikel vorstellt.

iLink Logo
Referenz

Telephony Access Platform und Hub für CRM

Gemeinsam mit der Connectivity-as-a-Service (CaaS) Lösung „TelephonyHub4CRM“ von X-INTEGRATE wurde beim Unternehmen ilink ein weiterer Schritt in Richtung Systemintegration der Telefonanlage in vorhandene Back-End Systeme und SaaS-Lösungen gemacht.

Geschäftsoptimierung
Wissen

Dynamische Anpassung an Absatzmärkte - Teil 2

Mathematische Optimierung ist ein valider Lösungsansatz für Zuordnungsprobleme. Der zweite Teil der Blogserie beweist dies mit einem Praxisbeispiel.

Wolke zur Visualisierung der Cloud
Wissen

Impact Nachlese - Mobile, Cloud und Integration

Wie kann Technologie helfen bessere Geschäftsergebnisse zu erzielen? Das war das Motto der diesjährigen Impact Konferenz der IBM in Las Vegas mit ca. 8500 internationalen Teilnehmern. Dieser Blogartikel fasst unsere Eindrücke zusammen.

Wissen

Digitalisierte Prozesse – nahtlose Kopplung mit BPM

Ein wichtiges Ziel in der Digitalisierung von Geschäftsprozessen ist die nahtlose Kopplung von interdisziplinären Partnern, ausführenden Akteuren und heterogenen IT-Systemen. Diese Herausforderungen können mit einem agilen Vorgehen gemeistert werden.

Boston Consulting Group Logo
Referenz

IBM ILOG CPLEX als Ergänzung zu MATLAB

Die X-INTEGRATE besitzt tiefgehendes Wissen in der individuellen Modellerstellung für IBM ILOG CPLEX sowie in der Integration mit anderen Applikationen und Lösungen. Die BCG hat auf diese Expertise zurückgegriffen und in kurzer Zeit MATLAB durch IBM ILOG CPLEX erweitert.

Wissen

Sicherer Dateitransfer mit IBM Sterling Connect:Direct

Es gibt viele Möglichkeiten Dateien zwischen unterschiedlichen Systemen zu übertragen. Allerdings sind nur wenige davon zuverlässig, performant und sicher. IBM Sterling Connect:Direct kann hier als gutes Beispiel genannt werden, welches die genannten Anforderungen erfüllt.

Arbeiten in der Cloud
Wissen

Defacto-Norm für Unternehmensanwendungen

Hybride Architekturen mittels effizienter Integrationstechnologien verbunden – so sehen heute IT-Nutzer, SW-Anbieter sowie Analysten die Best-Practice für Enterprise-IT Architekturen. So ein Feedback auf dem Event Cloud-EcoSystem. Weitere Impulse lesen Sie in unserem Blogartikel.

Bleiben Sie mit dem TIMETOACT GROUP Newsletter auf dem Laufenden!