Strategic Impact of Large Language Models

Things started moving really fast since OpenAI has pushed the edges of Large Language Models. It demonstrated that by pushing forward transformer architectures, it is possible to create machine learning models with capabilities that were not possible before.

Changes started slowly at 2018 with the release of GPT-1 with gradual evolution to bigger and more capable models until GPT-3.5 achieved viral worldwide popularity in 2022.
 

Automation of Workflows

Companies and individuals started finding innovative ways to automate workflows. GPT-4 in 2023 further increased the impact and momentum by demonstrating that it can pass US Bar exam within the top 10% of scores.

OpenAI research published with along the GPT-4 outlined possible economic impacts along the lines of:

  • workforce automation and displacement

  • new products

  • more personalized and efficient services

  • increased inequality

  • tech acceleration across all sectors

  • existing players in all sectors get entrenched
     

Investments in AI

In response to that, entities have started allocating noteable amounts of money to hedge the risks. Here are notable examples:

  • Microsoft, following its previous investments, invested $10 billion into OpenAI, started bundling offering ChatGPT capabilities within Azure and Bing Search

  • Accounting giant PricewaterhouseCoopers invests $1B, "aiming to help clients reimagine their businesses using generative AI."

  • USA budget for 2024 supports innovation and emerging technologies: $25 billion for CHIPS and Science Act-authorized activities.

These examples of investments are followed by a lot of "smaller" investments of all types: starting from Replit (producer of Github Copilot competitor) and to Elon Musk himself, getting 10k of A100 cards for his new AI company.

 

New Possibilites

Breadth of industry changes can also be shown by looking at the opposite side of the spectrum. What are the smallest known uses of ChatGPT?

  • ChatGPT helped to save the dog after vets couldn't figure the diagnosis.

  • People are using ChatGPT as a personal tutor for learning any subject.

  • Numerous cases of data extraction, manipulation and content generation, starting from personal knowledge bases up to chat bots: Obsidian plugins, Google Spreadsheet Add-in, AutoGPT and Babi AGI, Chat to PDF like Warren Buffet.

It is also important to know that OpenAI and Microsoft aren't holding the monopoly on this technology. It is quite reproducable, and things are evolving fast. It seems that almost every government, company and institute wants to have their own instance of ChatGPT (putting aside governments like Austria and Uganda). Probably things will evolve even faster than assumed because many single bright students and researchers show interest in a ChatGPT solution. That is the most powerful force. Here is a timeline of a single month to put things into the perspective (from a potential Google leak):

  • Feb 24 2023 - Meta announced LLaMA - OK-ish large language model that wasn't trained like ChatGPT but still had a lot of potential. It can run only on larger GPUs

  • within a week - Meta was leaked to a public. It wasn't possible to use it legally, but people could experiment

  • within days - people learned how to compress LLMs to fit on smaller GPUs and even run them on laptops, phones and ultimately on RaspberryPi 4 (retail price of 100 EUR)!

  • next day - thanks to Stanford Alpaca and LoRa repo, everybody could fine-tune LLMs on a single consumer-grade GPU

  • within a week - cross-university project called Vicuna reaches parity with Google Bard. While some aspects (data sources and evaluation) are questionable, results are really impressive. It is a fine-tune of LLaMa. Training costs - $300!

  • within a week - gpt4all is created. It is not just a model, but an ecosystem of open-source language models and chat bots.

Gpt4all was released on March 25, just a month after LLaMA announcement. Naturally, things didn’t stop there. They are still ongoing. Andrej Karpathy calls this “Cambrian explosion”.

 

Trends

So we can account and plan for a couple of trends:

  • Models will get smaller, more accessible and more focused

  • Most of the models will be bundled as services and commoditized

  • As models get commoditized, the value of data and expertise will rise.

  • There is a strong chance that the world will start switching to conversational chat-driven interfaces, following the trend set by OpenAI with its powerful plugins.

     

Conclusion

What could a modern company do in order to benefit the most from the momentum.

  • focus on competitive advantages of the business

  • do things that grow business moats (now and in future): gather data, deepen the understanding, grow networks

  • avoid doing things that are a relative waste of time: jump into fine-tuning before gathering data and exhausting the possibilities of prompt engineering.

  • continuously reevaluate position to stay aligned with the trends. Trustbit could be your partner in that.

Blog 2/3/25

ChatGPT & Co: LLM Benchmarks for January

Find out which large language models outperformed in the January 2025 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 1/7/25

ChatGPT & Co: LLM Benchmarks for December

Find out which large language models outperformed in the December 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 12/4/24

ChatGPT & Co: LLM Benchmarks for November

Find out which large language models outperformed in the November 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Wissen 4/30/24

LLM-Benchmarks April 2024

This LLM Leaderboard from april 2024 helps to find the best Large Language Model for digital product development.

Wissen 6/30/24

LLM-Benchmarks June 2024

This LLM Leaderboard from june 2024 helps to find the best Large Language Model for digital product development.

Blog 10/1/24

ChatGPT & Co: LLM Benchmarks for September

Find out which large language models outperformed in the September 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Wissen 7/30/24

LLM-Benchmarks July 2024

This LLM Leaderboard from July 2024 helps to find the best Large Language Model for digital product development.

Blog 11/12/24

ChatGPT & Co: LLM Benchmarks for October

Find out which large language models outperformed in the October 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Wissen 5/30/24

LLM-Benchmarks May 2024

This LLM Leaderboard from may 2024 helps to find the best Large Language Model for digital product development.

Blog 9/20/23

LLM Performance Series: Batching

Beginning with the September Trustbit LLM Benchmarks, we are now giving particular focus to a range of enterprise workloads. These encompass the kinds of tasks associated with Large Language Models that are frequently encountered in the context of large-scale business digitalization.

Blog 4/28/23

Creating a Social Media Posts Generator Website with ChatGPT

Using the GPT-3-turbo and DALL-E models in Node.js to create a social post generator for a fictional product can be really helpful. The author uses ChatGPT to create an API that utilizes the openai library for Node.js., a Vue component with an input for the title and message of the post. This article provides step-by-step instructions for setting up the project and includes links to the code repository.

Wissen 4/30/24

GPT & Co: The best language models for digital products

Our analysis based on real benchmark data reveals which solutions excel in document processing, CRM integration, external integration, marketing support and code generation. Find your ideal model!

Blog 6/27/23

Boosting speed of scikit-learn regression algorithms

The purpose of this blog post is to investigate the performance and prediction speed behavior of popular regression algorithms, i.e. models that predict numerical values based on a set of input variables.

Felss Logo
Referenz

Quality scoring with predictive analytics models

Felss Systems GmbH relies on a specially developed predictive analytics method from X-INTEGRATE. With predictive scoring and automation, the efficiency of industrial machinery is significantly increased.

Headerbild Industrial Internet of Things (IIoT)
Kompetenz 9/16/20

Industrial Internet of Things

Whether in industry, urban planning or in the private sphere: The Internet of Things is making our lives easier. In particular, the digitalization of industrial production, saves companies time and money. We support you with your IoT project!

Blog 11/30/22

Part 2: Detecting Truck Parking Lots on Satellite Images

In the previous blog post, we created an already pretty powerful image segmentation model in order to detect the shape of truck parking lots on satellite images. However, we will now try to run the code on new hardware and get even better as well as more robust results.

Headerbild für IBM SPSS
Technologie

IBM SPSS Modeler

IBM SPSS Modeler is a tool that can be used to model and execute tasks, for example in the field of Data Science and Data Mining, via a graphical user interface.

Blog 12/19/22

Creating a Cross-Domain Capable ML Pipeline

As classifying images into categories is a ubiquitous task occurring in various domains, a need for a machine learning pipeline which can accommodate for new categories is easy to justify. In particular, common general requirements are to filter out low-quality (blurred, low contrast etc.) images, and to speed up the learning of new categories if image quality is sufficient. In this blog post we compare several image classification models from the transfer learning perspective.

Blog 10/31/23

5 Inconvenient Questions when hiring an AI company

This article discusses five questions you should ask when buying an AI. These questions are inconvenient for providers of AI products, but they are necessary to ensure that you are getting the best product for your needs. The article also discusses the importance of testing the AI system on your own data to see how it performs.

Blog 5/5/23

How we discover and organise domains in an existing product

Software companies and consultants like to flex their Domain Driven Design (DDD) muscles by throwing around terms like Domain, Subdomain and Bounded Context. But what lies behind these buzzwords, and how these apply to customers' diverse environments and needs, are often not as clear. As it turns out it takes a collaborative effort between stakeholders and development team(s) over a longer period of time on a regular basis to get them right.

Bleiben Sie mit dem TIMETOACT GROUP Newsletter auf dem Laufenden!